Prevalence and impact of rhinitis, sleep disordered breathing and OSA in asthmatic patients

Matteo Ferrando
Fulvio Braido
Ilaria Baiardini
Giorgio Walter Canonica

Allergy and Respiratory Diseases Clinic, DIMI - University of Genova, IRCCS AOU San Martino-IST, Genova, Italy

Address for correspondence:
Fulvio Braido
Allergy & Respiratory Diseases Clinic - DIMI University of Genova, IRCCS AOU San Martino-IST Pad. Maragliano, Largo Rosanna Benzi 10 16132 Genova, Italy Phone/Fax: +390105553524 E-mail: fulvio.braido@unige.it

Summary
Obstructive sleep apnea syndrome (OSAS) often coexists in patients with bronchial asthma. The reasons for this association are not clear enough and, particularly, the role of the commonest asthma co-morbidity, rhinitis, in influencing patients symptoms, quality of life and prognosis, need to be further investigated.
The aim of this review is to define most of the pathogenetic aspects of the relationship among asthma, rhinitis and OSAS, and to evaluate the effect of these comorbidities on disease management and patient’s life.

KEY WORDS: asthma; rhinitis; OSAS; comorbidity.

Introduction
International asthma guidelines state that sleep impairment is a criterion in defining disease severity (1). Furthermore, the presence and frequency of nocturnal symptoms is essential in establishing the level of asthma control. Some asthma features could influence Obstructive Sleep Apnea Syndrome (OSAS) development and severity; vice versa OSAS can influence asthma control achievement.
The aim of the present review is to analyse the potential relationship between asthma rhinitis and OSAS. The most relevant symptom of rhinitis, both allergic and non-allergic, is the nasal congestion. This and the other rhinitis symptoms, such as rhinorrhea, sneezing, itching nose and eyes, are usually present during the day as well as during the night, and can have a relevant impact on sleep quality. Indeed, the obstruction of upper airways is always involved in the pathogenesis of sleep disordered breathing (SDB), in particular Obstructive Sleep Apnea (OSA). Daytime sleepiness and fatigue, typical symptoms of OSAS, are often present in patients with rhinitis, so they can helpfully be used to investigate the presence of both diseases. Furthermore, the treatment of both diseases is important not only to achieve the control of asthma, as suggested by guidelines, but also to improve the quality of sleep (2). OSAS is a respiratory disease characterized by episodes of complete or partial upper airways obstruction due to their collapse during sleep, necessitating recurrent awakenings to re-establish airway patency, associated with oxygen desaturation. It is a common disorder that has been reported to affect approximately 5% of the general population (3) and its prevalence increases with age. It has been estimated that more than 158 million adults suffer from sleep apnea in U.S., and only 1% of OSAS patients are receiving appropriate treatment for their disease (4). The keystone of OSAS physiopathology is the narrowing and collapsing of the airways which causes their obstruction during sleep. The site of this narrowing is usually localized in the pharynx (5). During the inspiration there is a reduction of pharyngeal pressure and of the tone of the pharyngeal dilatator muscles which predisposes to the posterior displacement of the soft palate and tongue during the night, causing the obstruction of the airways and making the patient snore.

UPPER airway size in OSAS patients is smaller than in healthy subjects: Computed Tomography (CT) scans and resistance measurements noticed bigger fat deposits in the lateral walls of the pharynx and structural differences of the facial bone, like as the retroposition of the maxilla and mandible which can predispose to airways collapsibility (6).

According to the patients and their bed partners, OSAS dominant symptoms are excessive sleepiness, snoring, restless sleep, fatigue, nocturia, nocturnal choking and awakenings that lead to sleep fragmentation and to cognitive impairment, with lacks of attention, concentration and memory (7).

Pathogenetic aspects
Recent studies have found several links in the pathogenesis of asthma, rhinitis and OSAS. The link existing between upper and lower airways has been repeatedly observed in the past and has led to coin the concept of “united airways disease” (8). One poten-
Several mediators and pro-inflammatory cytokines released in allergic inflammation act in both allergic inflammatory response, mucosal edema and congestion and in altering sleep structure.

Allergic rhinitis and sleep

Several observational studies have documented a link between AR and sleep impairment. Two European trials clearly demonstrated that allergic rhinitis adversely impacts sleep quality both in adults and in children/adolescents. The first study, conducted on a population of 476 subjects with AR, showed that in almost 40% of them rhinitis had a moderate or severe impact on sleep quality (21). The second one was conducted on a population of 221 children and adolescents suffering from AR, and showed that 79% of them had sleep quality severely impacted (22).

Leger et al. demonstrated that AR symptoms are associated with sleep complaints (23). Their purpose was to assess the consequences of rhinitis on sleep and to identify whether and how AR duration and severity are associated to sleep impairment. They evaluated a sample of more than 1000 patients who were asked to fill in validated questionnaires assessing quality of life and sleepiness score. Performing a case-control study on two populations, one composed by 502 controls and the other by 591 patients with AR, they found that difficulty in falling asleep, non-restorative sleep, snoring and nocturnal awakenings were referred by more than 40% of patients, while 63% reported a feeling of lack of sleep.

Nasal obstruction associated with congestion represents a risk factor for respiratory sleep disordered breathing, including snoring (24), increase of the number of microarousals, episodes of hypopnea and apnea (25). The hypothesis that rhinitis could lead to SDB, and OSAS in particular, may be explained by two physical principles. The Bernoulli principle states that the wider the beginning of the airway is, the less the risk for collapse is; the narrower the beginning is, the greater the risk for collapse is. The Venturi principle states that air must pass through a small tube faster than through a large tube, if the volume of air and time to pass through are equal. According to these physical principles, rhinitis, providing a narrowing of the initial airway, causes the flow to become turbulent. Furthermore, the upper airway behaves like a Starling resistor: the obstruction at the inlet (i.e. the nasal airway) produces collapsing forces that are manifest downstream in the collapsible segment, the pharynx (26).

Obstructive apneas were found to be more frequent and longer in AR patients who have nasal obstruction than in those without obstruction, when sleep was measured by means of polysomnography (27). Furthermore, patients suffering from nasal congestion had a 1.8 times greater chance of moderate-to-severe sleep-disordered breathing than those without congestion (28). Compared with healthy control subjects, patients with AR had 10 times more microarousals from sleep in association with periodic breathing and hypopneic and hyperpneic episodes (29). To better define the potential interactions among nocturnal nasal obstruction, sleep and breathing disturbances in patients with OSA and chronic nasal congestion, Clarenbach et al. performed a randomized double-blind, placebo-controlled study on the effects of topical nasal decongestion xylometazoline. They found that the number of apnea/hypopneas (Apnea-Hypopnea Index - AHI) and oxygen desaturations was reduced (30).

Other symptoms, such as sneezing, itchy eyes, rhinorrhea, and nasal pruritus, may also contribute to sleep disturbances in patients with AR (31).

Other evidence showed that allergic rhinitis increases the production of multiple pro-inflammatory factors that affect sleep. Several mediators and pro-inflammatory cytokines released in allergic inflammation act in both allergic inflammatory response, mucosal edema and congestion and in altering sleep structure (32).

Patients with chronic nighttime rhinitis symptoms are two times more likely to snore than control subjects, and this is the reason why about 50% of rhinitis patients with nasal congestion have an odd ratio of 1.5 to snore than patients without nasal congestion (28). The logis-
tic regression model estimating the association of congestion with snoring, performed by Young et al., shows that individuals with chronic severe nasal congestion during the night have a 3.6-fold greater risk of habitual snoring at baseline and a 4.9-fold greater risk of habitual snoring at 5-year follow-up (24).

Although the correlation between snoring and apnea needs to be fully understood, nasal congestion is associated to sleep apnea. The greater the increase of nasal resistance is, the greater the increase in obstructive apnea is. This phenomenon seems strictly related to the cross sectional area of upper airways (33).

Asthma and OSAS: pathogenetical issues

OSAS and asthma are common, share similar nocturnal symptoms, and involve airway obstruction as the cornerstone of their pathophysiology (Figure 1). Asthmatics often rely on oral corticosteroids (OCS). Those requiring frequent bursts of OCS have a very high prevalence of OSA (34).

In short, OSAS and asthma may have a bidirectional relationship in which each can exacerbate the other (35). In 2009, Alharbi et al. performed a study to measure the prevalence of asthma in OSAS and to define the characteristics of patients with OSAS who suffer from asthma. They demonstrated a higher prevalence of asthma (35.1%) in patients with OSAS as compared to general population. OSAS patients with concomitant asthma have a higher BMI and AHI and a lower oxygen saturation compared to OSAS patients without asthma (36).

Julien et al. demonstrated a high prevalence of OSAS among patients with severe asthma, compared to patients with moderate asthma or without asthma (37). The interaction of OSAS and asthma could be reciprocal since asthma-related factors may also contribute to OSA deterioration (38). Alkhali et al. described the potential links between asthma and OSAS. The increased upper airways collapsibility and the nasal obstruction frequently accompanying asthma above described represent facilitating factors of OSAS development in these patients (14). On the other hand, asthma related factor such as neuroreceptorial mechanisms that induce an increased vagal tone with following bronchoconstriction, could worsen upper airways collapsibility. Asthma and OSAS patients often suffer also from gastroesophageal reflux disease (GERD). GERD has a higher prevalence in OSAS patients as compared to general population (39, 45) and represents an important trigger of nocturnal asthma exacerbation (39-45). Local airway and systemic inflammation may probably be involved in predisposing asthma patients to BHR leading to bronchial caliber instability and narrowing of bronchial diameter (39-47). Airway obstruction can impact negatively cardiovascular conditions, for example hypertension and heart failure (HF), which often are present in untreated OSAS patients (48, 49). The increased concentration of serum leptin, typical of both OSAS and obese asthmatic patients, are still controversial and need to be deeply investigated (50, 51). The weight gain is typical of OSAS patients. One reason is sleep fragmentation which drives to a reduced production of growth hormone (GH) and consequently to its reduced lipolytic action (53-55).

Figure 1 - Correlation between OSAS and bronchial asthma.
To sum up, the data presented in this review support the conclusions that CPAP therapy results in significant improvement in asthma, OSAS, and concurrent asthma demonstrated that resolution of their pattern of nocturnal worsening (59). A more recent prospective study of 20 patients with severe OSAS and concurrent asthma demonstrated that CPAP therapy results in significant improvement in asthma quality of life (60).

Conclusions

To sum up, the data presented in this review support the evidence that rhinitis, asthma, and OSAS frequently coexist. Although 40-80% of patients with asthma suffer also from rhinitis and almost 10-40% of patients with AR suffer from asthma (61), this comorbidity has not been deeply understood, even though it has been widely investigated in multiple studies.

As shown above, both AR and asthma may contribute to OSA, which, according to the pathogenetic aspects we have reported, can worsen the control of its concomitant comorbidities. However, it remains difficult to draw firm conclusions regarding optimal management strategies in patients with OSAS-asthma overlap. Surely, asthma and OSAS correct diagnosis and therapy should previously consider the correct treatment of rhinitis.

A careful evaluation for exacerbating comorbidity, in addition to optimizing treatment of both OSAS and asthma remains crucial in this patients’ population.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

The study was supported by ARMIA (Associazione Ricerca Malattie Immunologiche e Allergiche). The authors thank ASPADIRES (Associazione Pazienti Disturbi Respiratori nel Sonno) and acknowledge Dr. Marianna Bruzzone for linguistic assistance with the manuscript.

References

7. Onen F, Onen H. Obstructive sleep apnea and cognitive impairment in the elderly. Psychol Neuropsychi-
Asthma and sleep disordered breathing


